

Lecture 07:

Functions

Part 2 of 2

Outline for Today

- Recap from Last Time
 - Where are we, again?
- A Proof About Birds
 - Trust me, it's relevant.
- Assuming vs Proving
 - Two different roles to watch for.
- Connecting Function Types
 - Relating the topics from last time.

Recap from Last Time

Recap from Last Time

Injection: $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow f(a_1) \neq f(a_2))$

If the inputs are different, the outputs are different

Can also define with the contrapositive!

Surjection: $\forall b \in B. \exists a \in A. f(a) = b$

"For every possible output, there's an input that produces it."

Involution: $\forall x \in A. f(f(x)) = x$

"Applying f twice is equivalent to not applying f at all."

	To prove that this is true
$\forall x. A$	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.
$\exists x. A$	Find an x where A is true. Then prove that A is true for that specific choice of x.
A o B	Assume A is true, then prove B is true.
$A \wedge B$	Prove A . Also prove B .
$A \lor B$	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)
$A \leftrightarrow B$	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.

New Stuff!

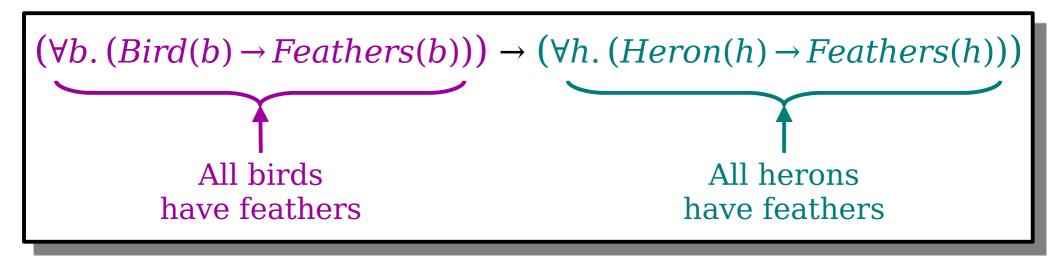
A Proof About Birds

Theorem: If all birds have feathers, then all herons have feathers.

Given the predicates

Bird(b), which says b is a bird; Heron(h), which says h is a heron; and Feathers(x), which says x has feathers,

translate the theorem into first-order logic.



	To prove that this is true
$\forall x. A$	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.
$\exists x. A$	Find an x where A is true. Then prove that A is true for that specific choice of x.
A o B	Assume A is true, then prove B is true.
$A \wedge B$	Prove A . Also prove B .
	Either prove $\neg A \rightarrow B$ or

 $(\forall b. (Bird(b) \rightarrow Feathers(b))) \rightarrow (\forall h. (Heron(h) \rightarrow Feathers(h)))$

All birds have feathers

All herons have feathers

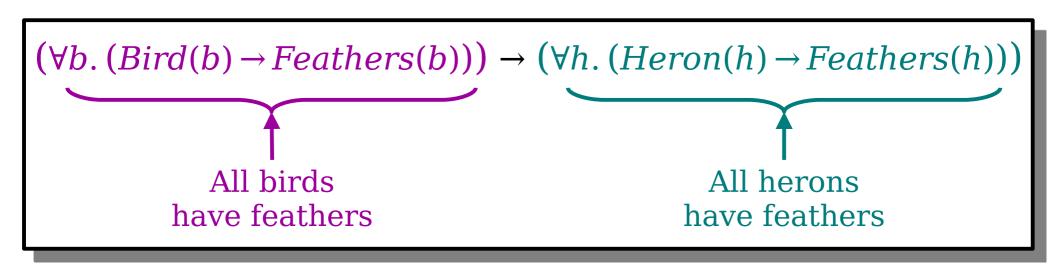
Proof: Assume that all birds have feathers. We will show that all herons have feathers.

Answer at

https://cs103.stanford.edu/pollev

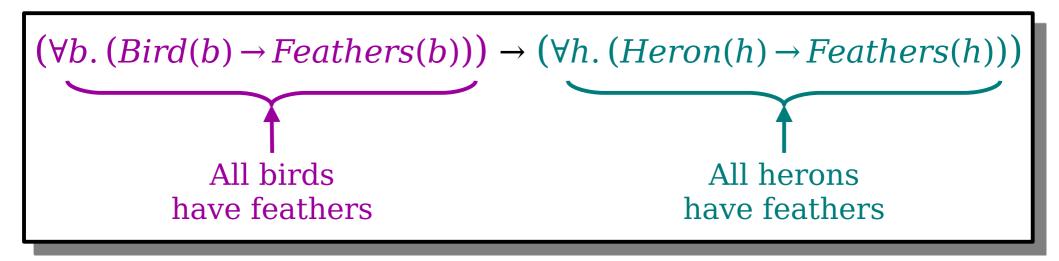
Which makes more sense as the next step in this proof?

- 1. Consider an arbitrary bird *b*.
- 2. Consider an arbitrary heron h.



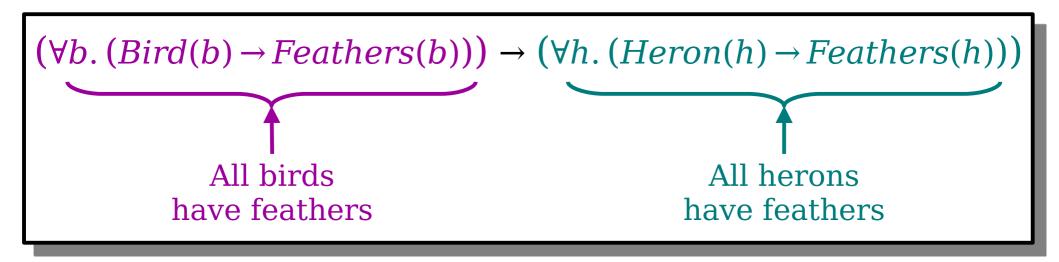
Proof: Assume that all birds have feathers. We will show that all herons have feathers.

Consider an arbitrary bird b. Since b is a bird, b has feathers. [and now we're stuck! we are interested in herons, but b might not be one. It could be a hummingbird, for example!]



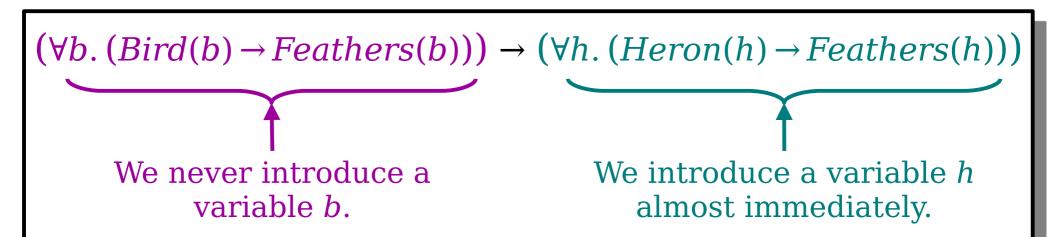
Proof: Assume that all birds have feathers. We will show that all herons have feathers.

Consider an arbitrary heron h. We will show that h has feathers. To do so, note that since h is a heron we know h is a bird. Therefore, by our earlier assumption, h has feathers.



Proving vs. Assuming

- In the context of a proof, you will need to assume some statements and prove others.
 - Here, we assumed all birds have feathers.
 - Here, we **proved** all herons have feathers.
- Statements behave differently based on whether you're assuming or proving them.



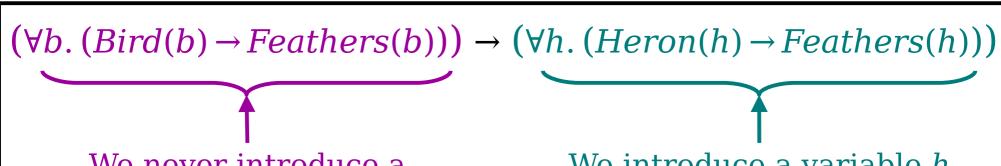
Proving vs. Assuming

• To *prove* the universally-quantified statement

$$\forall x. P(x)$$

we introduce a new variable *x* representing some arbitrarily-chosen value.

- Then, we prove that P(x) is true for that variable x.
- That's why we introduced a variable *h* in this proof representing a heron.



We never introduce a variable *b*.

We introduce a variable *h* almost immediately.

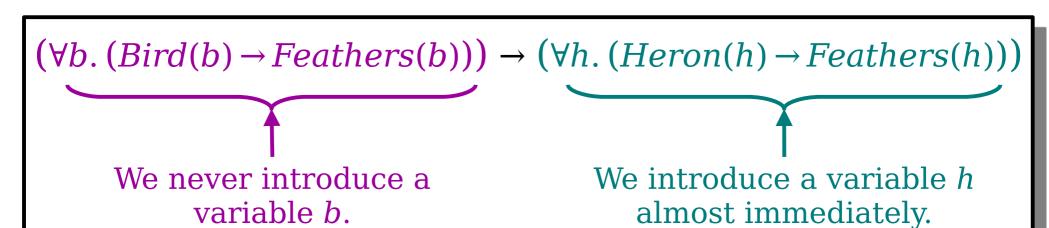
Proving vs. Assuming

• If we **assume** the statement

$$\forall x. P(x)$$

we **do not** introduce a variable x.

- Rather, if we find a relevant value z somewhere else in the proof, we can conclude that P(z) is true.
- That's why we didn't introduce a variable b in our proof, and why we concluded that h, our heron, have feathers.



	If you <i>assume</i> this is true	To prove that this is true
$\forall x. A$	Initially, <i>do nothing</i> . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.
$\exists x. A$	Introduce a variable x into your proof that has property A.	Find an x where A is true. Then prove that A is true for that specific choice of x.
A o B	Initially, <i>do nothing</i> . Once you know <i>A</i> is true, you can conclude <i>B</i> is also true.	Assume A is true, then prove B is true.
$A \wedge B$	Assume A. Also assume B.	Prove A . Also prove B .
$A \lor B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)
$A \leftrightarrow B$	Assume $A \to B$ and $B \to A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Connecting Function Types

Types of Functions

- We now have three special types of functions:
 - *involutions*, functions that undo themselves;
 - *injections*, functions where different inputs go to different outputs; and
 - **surjections**, functions that cover their whole codomain.
- *Question:* How do these three classes of functions relate to one another?

$$(\forall x \in A. \ f(f(x)) = x) \rightarrow (\forall b \in A. \ \exists a \in A. \ f(a) = b)$$
Assume this.

Prove this.

Assume this.

Prove this.

If you **assume** this is true...

Initially, *do nothing*. Once you find a *z* through other means, you can state it has property *A*.

$$(\forall x \in A. f(f(x)) = x) \rightarrow (\forall b \in A. \exists a \in A. f(a) = b)$$

Assume this.

Since we're <u>assuming</u> this, we aren't going to pick a specific choice of x right now. Instead, we're going to keep an eye out for something to apply this fact to.

Prove this.

Proof Outline

1. Assume f is an involution.

$$(\forall x \in A. f(f(x)) = x) \rightarrow$$

We've said that we need to prove this statement. How do we do that?

 $(\forall x \in A. f(f(x)) = x) \rightarrow (\forall b \in A. \exists a \in A. f(a) = b)$

Prove this.

What do you do to prove $\forall b \in A$. [something]?

Answer at

https://cs103.stanford.edu/pollev

Proof Outline

1. Assume *f* is an involution.

$$(\forall x \in A. \ f(f(x)) = x) \rightarrow (\forall b \in A. \ \exists a \in A. \ f(a) = b)$$

To **prove** that this is true...

Have the reader pick an arbitrary x. Then prove A is true for that choice of x.

Prove this.

Proof Outline

1. Assume f is an involution.

$$(\forall x \in A. \ f(f(x)) = x) \rightarrow (\forall b \in A. \ \exists a \in A. \ f(a) = b)$$

There's a universal quantifier up front.

Since we're <u>proving</u> this, we'll pick an

arbitrary $b \in A$.

Prove this.

Proof Outline

- 1. Assume f is an involution.
- 2. Pick an arbitrary $b \in A$.

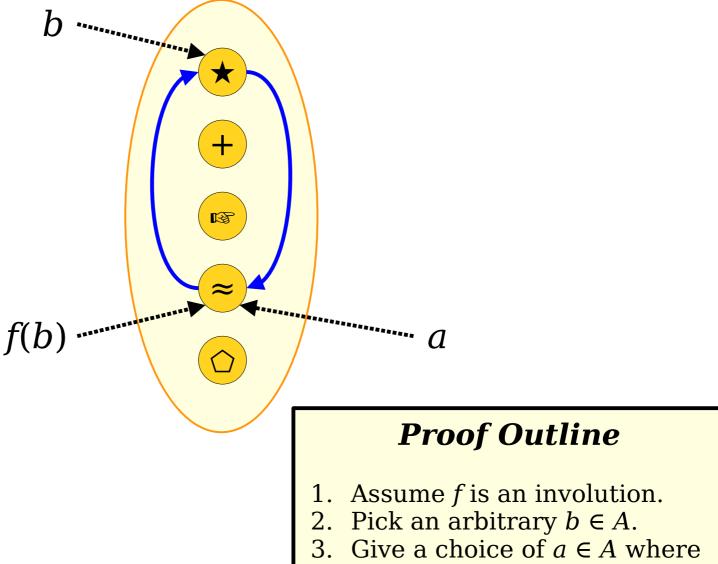
$$(\forall x \in A. f(f(x)) = x) \rightarrow (\forall b \in A. \exists a \in A. f(a) = b)$$

Now, we hit an existential quantifier. Since we're <u>proving</u> this, we need to find a choice of $a \in A$ where this is true.

Prove this.

Proof Outline

- 1. Assume f is an involution.
- 2. Pick an arbitrary $b \in A$.
- 3. Give a choice of $a \in A$ where f(a) = b.



f(a) = b.

Theorem: For any function $f: A \rightarrow A$, if f is an involution, then f is surjective.

Proof: Pick any involution $f: A \to A$. We will prove that f is surjective. To do so, pick an arbitrary $b \in A$. We need to show that there is an $a \in A$ where f(a) = b.

Specifically, pick a = f(b). This means that f(a) = f(f(b)), and since f is an involution we know that f(f(b)) = b. Putting this together, we see that f(a) = b, which is what we needed to show.

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.

The Two-Column Proof Organizer

What We're Assuming

 $f: A \to A$ is an involution. $\forall z \in A. \ f(f(z)) = z.$

We're assuming this universally—quantified statement, so we won't introduce a variable for what's here.

What We Need to Prove

f is injective. $\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2$

We need to prove
this universally—
quantified statement.
So let's introduce
arbitrarily—chosen
values.

What We're Assuming

 $f: A \rightarrow A$ is an involution.

$$\forall z \in A. f(f(z)) = z.$$

$$a_1 \in A$$

$$a_2 \in A$$

What We Need to Prove

f is injective.

$$\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)$$

What We're Assuming

 $f: A \rightarrow A$ is an involution.

$$\forall z \in A. f(f(z)) = z.$$

$$a_1 \in A$$

$$a_2 \in A$$

What We Need to Prove

f is injective.

```
\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2)
```

We need to prove this implication. So we assume the antecedent and prove the consequent.

What We're Assuming

 $f: A \rightarrow A$ is an involution.

$$\forall z \in A. f(f(z)) = z.$$

$$a_1 \in A$$

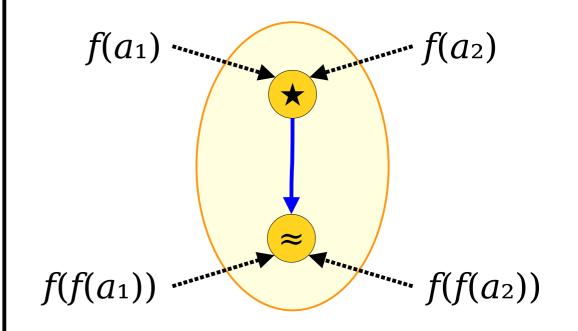
$$a_2 \in A$$

$$f(a_1) = f(a_2)$$

What We Need to Prove

f is injective.

$$\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2$$



What We're Assuming

 $f: A \rightarrow A$ is an involution.

$$\forall z \in A. f(f(z)) = z.$$

$$a_1 \in A$$

$$a_2 \in A$$

$$f(a_1) = f(a_2)$$

$$f(f(a_1)) = f(f(a_2))$$

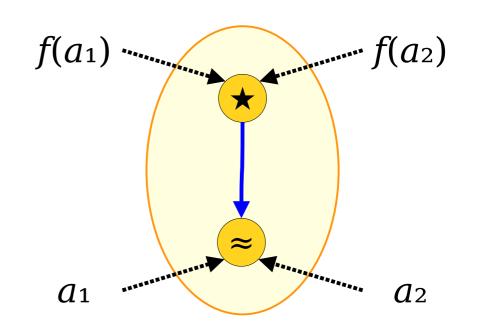
$$f(f(a_1)) = a_1$$

$$f(f(a_2)) = a_2$$

What We Need to Prove

f is injective.

$$\forall a_1 \in A. \ \forall a_2 \in A. \ (f(a_1) = f(a_2) \rightarrow a_1 = a_2$$



Theorem: Let $f: A \rightarrow A$ be an involution. Then f is injective.

Proof: Choose any a_1 , $a_2 \in A$ where $f(a_1) = f(a_2)$. We need to show that $a_1 = a_2$.

Since $f(a_1) = f(a_2)$, we know that $f(f(a_1)) = f(f(a_2))$. Because f is an involution, we see $a_1 = f(f(a_1))$ and that $f(f(a_2)) = a_2$. Putting this together, we see that

$$a_1 = f(f(a_1)) = f(f(a_2)) = a_2,$$

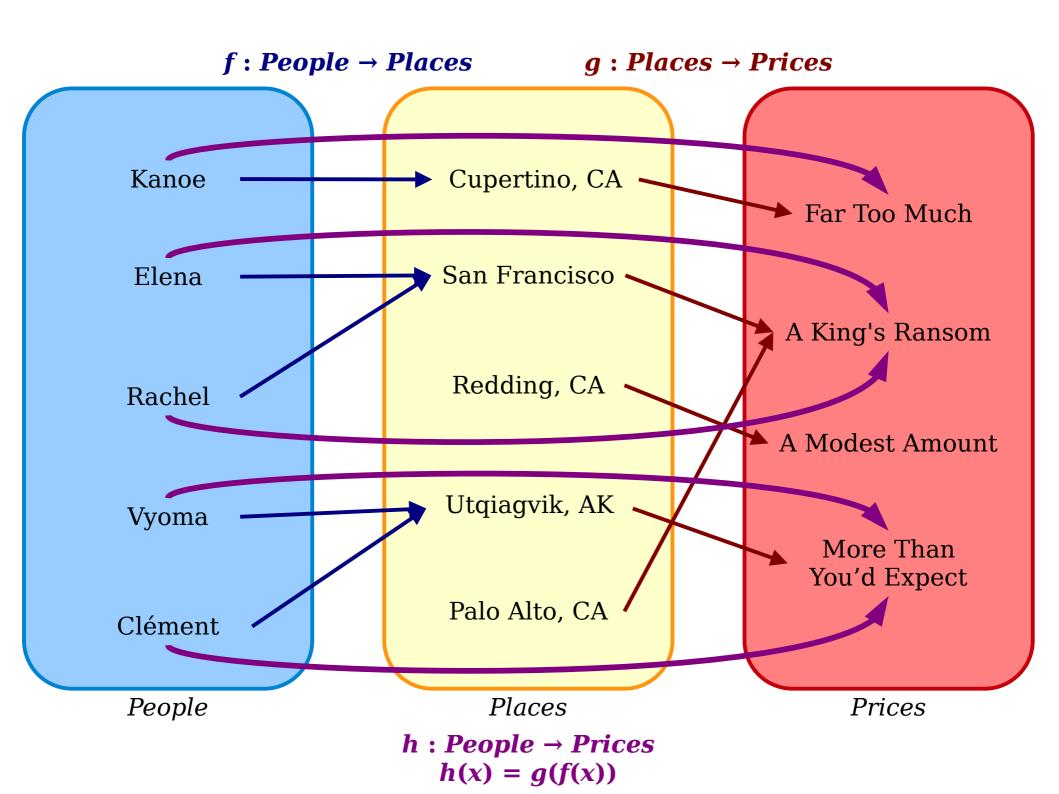
so $a_1 = a_2$, as needed.

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.

Time-Out for Announcements!

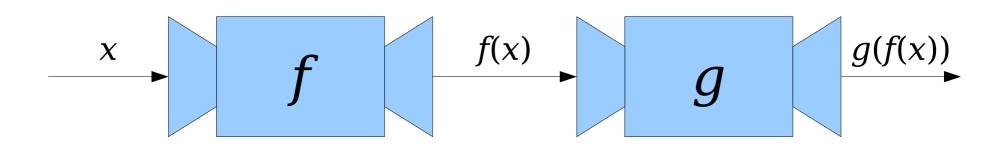
Back to CS103!

Function Composition



Function Composition

- Suppose that we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
- Notice that the codomain of f is the domain of g. This means that we can use outputs from f as inputs to g.



Function Composition

- Suppose that we have two functions $f: A \rightarrow B$ and $g: B \rightarrow C$.
- The *composition of f and g*, denoted $g \circ f$, is a function where

The name of the function is $g \circ f$.

When we apply it to an input x,

we write $(g \circ f)(x)$. I don't know

why, but that's what we do.

- $g \circ f : A \to C$, and
- $(g \circ f)(x) = g(f(x)).$
- A few things to notice:
 - The domain of $g \circ f$ is the domain of f. Its codomain is the codomain of g.
 - Even though the composition is written $g \circ f$, when evaluating $(g \circ f)(x)$, the function f is evaluated first.

Properties of Composition

What We're Assuming

 $f: A \to B$ is an injection. $\forall x \in A. \ \forall y \in A. \ (x \neq y \to f(x) \neq f(y))$) $g: B \to C$ is an injection. $\forall x \in B. \ \forall y \in B. \ (x \neq y \to g(x) \neq g(y))$

We're assuming these universally—quantified statements, so we won't introduce any variables for what's here.

What We Need to Prove

 $g \circ f$ is an injection. $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)$

We need to prove
this universally—
quantified statement.
So let's introduce
arbitrarily—chosen
values.

What We're Assuming

```
f: A \to B is an injection.
     \forall x \in A. \ \forall y \in A. \ (x \neq y \rightarrow y \rightarrow y)
          f(x) \neq f(y)
g: B \to C is an injection.
     \forall x \in B. \ \forall y \in B. \ (x \neq y \rightarrow y )
          q(x) \neq q(y)
a_1 \in A is arbitrarily-chosen.
a_2 \in A is arbitrarily-chosen.
```

What We Need to Prove

```
g \circ f is an injection.

\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)
```

We need to prove
this universally—
quantified statement.
So let's introduce
arbitrarily—chosen
values.

What We're Assuming

```
f: A \to B is an injection.
     \forall x \in A. \ \forall y \in A. \ (x \neq y \rightarrow y \rightarrow y)
          f(x) \neq f(y)
g: B \to C is an injection.
     \forall x \in B. \ \forall y \in B. \ (x \neq y \rightarrow y )
          g(x) \neq g(y)
a_1 \in A is arbitrarily-chosen.
a_2 \in A is arbitrarily-chosen.
a_1 \neq a_2
```

What We Need to Prove

 $g \circ f$ is an injection. $\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)$

Now we're looking at an implication. Let's assume the antecedent and prove the consequent.

What We're Assuming

```
f: A \rightarrow B is an injection.
     \forall x \in A. \ \forall y \in A. \ (x \neq y \rightarrow y \rightarrow y)
          f(x) \neq f(y)
g: B \to C is an injection.
     \forall x \in B. \ \forall y \in B. \ (x \neq y \rightarrow y )
           q(x) \neq q(y)
a_1 \in A is arbitrarily-chosen.
a_2 \in A is arbitrarily-chosen.
```

 $a_1 \neq a_2$

What We Need to Prove

 $g \circ f$ is an injection.

$$\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)$$

Let's write this out separately and simplify things a bit.

What We're Assuming

```
f: A \to B is an injection.
     \forall x \in A. \ \forall y \in A. \ (x \neq y \rightarrow y \rightarrow y)
          f(x) \neq f(y)
g: B \to C is an injection.
     \forall x \in B. \ \forall y \in B. \ (x \neq y \rightarrow y )
          q(x) \neq q(y)
a_1 \in A is arbitrarily-chosen.
a_2 \in A is arbitrarily-chosen.
a_1 \neq a_2
```

What We Need to Prove

```
g \circ f is an injection.

\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)

)

g(f(a_1)) \neq g(f(a_2))
```

What We're Assuming

```
f: A \to B is an injection.
     \forall x \in A. \ \forall y \in A. \ (x \neq y \rightarrow y \rightarrow y)
          f(x) \neq f(y)
g: B \to C is an injection.
     \forall x \in B. \ \forall y \in B. \ (x \neq y \rightarrow y )
          q(x) \neq q(y)
a_1 \in A is arbitrarily-chosen.
a_2 \in A is arbitrarily-chosen.
a_1 \neq a_2
```

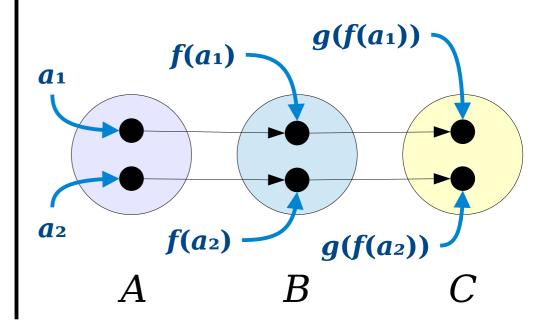
What We Need to Prove

```
g \circ f is an injection.

\forall a_1 \in A. \ \forall a_2 \in A. \ (a_1 \neq a_2 \rightarrow (g \circ f)(a_1) \neq (g \circ f)(a_2)

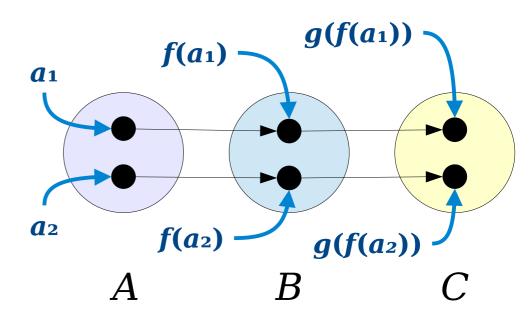
)

g(f(a_1)) \neq g(f(a_2))
```



Proof: Let $f: A \to B$ and $g: B \to C$ be arbitrary injections. We will prove that the function $g \circ f: A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

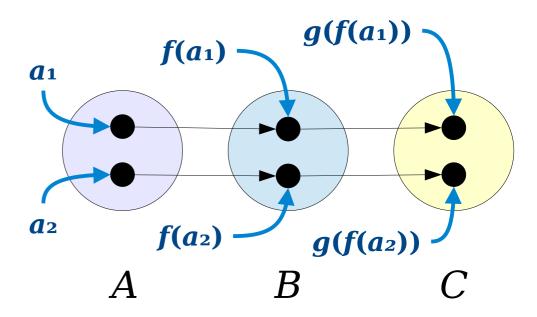
Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.



Proof: Let $f: A \to B$ and $g: B \to C$ be arbitrary injections. We will prove that the function $g \circ f: A \to C$ is also injective. To do so, consider any $a_1, a_2 \in A$ where $a_1 \neq a_2$. We will prove that $(g \circ f)(a_1) \neq (g \circ f)(a_2)$. Equivalently, we need to show that $g(f(a_1)) \neq g(f(a_2))$.

Since f is injective and $a_1 \neq a_2$, we see that $f(a_1) \neq f(a_2)$. Then, since g is injective and $f(a_1) \neq f(a_2)$, we see that $g(f(a_1)) \neq g(f(a_2))$, as required.

This proof contains no first-order logic syntax (quantifiers, connectives, etc.). It's written in plain English, just as usual.



Proof: In the appendix!

Major Ideas From Today

- Proofs involving first-order definitions are heavily based on the structure of those definitions, yet FOL notation itself does *not* appear in the proof.
- Statements behave differently based on whether you're *assuming* or *proving* them.
- When you *assume* a universally-quantified statement, initially, do nothing. Instead, keep an eye out for a place to apply the statement more specifically.
- When you *prove* a universally-quantified statement, pick an arbitrary value and try to prove it has the needed property.

	If you <i>assume</i> this is true	To prove that this is true
$\forall x. A$	Initially, <i>do nothing</i> . Once you find a <i>z</i> through other means, you can state it has property <i>A</i> .	Have the reader pick an arbitrary x. We then prove A is true for that choice of x.
$\exists x. A$	Introduce a variable x into your proof that has property A.	Find an x where A is true. Then prove that A is true for that specific choice of x.
A o B	Initially, <i>do nothing</i> . Once you know <i>A</i> is true, you can conclude <i>B</i> is also true.	Assume A is true, then prove B is true.
$A \wedge B$	Assume A. Also assume B.	Prove A . Also prove B .
$A \lor B$	Consider two cases. Case 1: A is true. Case 2: B is true.	Either prove $\neg A \rightarrow B$ or prove $\neg B \rightarrow A$. (Why does this work?)
$A \leftrightarrow B$	Assume $A \to B$ and $B \to A$.	Prove $A \rightarrow B$ and $B \rightarrow A$.
$\neg A$	Simplify the negation, then consult this table on the result.	Simplify the negation, then consult this table on the result.

Next Time

- Set Theory Revisited
 - Formalizing our definitions.
- Proofs on Sets
 - How to rigorously establish set-theoretic results.

Appendix: Additional Function Proofs

Proof: Composing surjections yields a surjection.

Theorem: If $f: A \to B$ is surjective and $g: B \to C$ is surjective, then $g \circ f: A \to C$ is also surjective.

Proof: Let $f: A \to B$ and $g: B \to C$ be arbitrary surjections. We will prove that the function $g \circ f: A \to C$ is also surjective. To do so, we will prove that for any $c \in C$, there is some $a \in A$ such that $(g \circ f)(a) = c$. Equivalently, we will prove that for any $c \in C$, there is some $a \in A$ such that g(f(a)) = c.

Consider any $c \in C$. Since $g: B \to C$ is surjective, there is some $b \in B$ such that g(b) = c. Similarly, since $f: A \to B$ is surjective, there is some $a \in A$ such that f(a) = b. Then we see that

$$g(f(a)) = g(b) = c$$
, which is what we needed to show. \blacksquare